Dirichlet’s Theorem about Primes in Arithmetic Progressions
نویسنده
چکیده
Dirichlet’s theorem states that if q and l are two relatively prime positive integers, there are infinitely many primes of the form l+kq. Dirichlet’s theorem is a generalized statement about prime numbers and the theory of Fourier series on the finite abelian group (Z/qZ)∗ plays an important role in the solution.
منابع مشابه
Dirichlet’s Theorem on Arithmetic Progressions∗
In this paper, we derive a proof of Dirichlet’s theorem on primes in arithmetic progressions. We try to motivate each step in the proof in a natural way, so that readers can have a sense of how mathematics works.
متن کاملFormalization of the prime number theorem and Dirichlet's theorem
We present the formalization of Dirichlet’s theorem on the infinitude of primes in arithmetic progressions, and Selberg’s elementary proof of the prime number theorem, which asserts that the number π(x) of primes less than x is asymptotic to x/ log x, within the proof system Metamath.
متن کاملPrime Numbers in Certain Arithmetic Progressions
We discuss to what extent Euclid’s elementary proof of the infinitude of primes can be modified so as to show infinitude of primes in arithmetic progressions (Dirichlet’s theorem). Murty had shown earlier that such proofs can exist if and only if the residue class (mod k ) has order 1 or 2. After reviewing this work, we consider generalizations of this question to algebraic number fields.
متن کاملDirichlet’s Theorem on Primes in Arithmetic Progressions
Let us be honest that the proof of Dirichlet’s theorem is of a difficulty beyond that of anything else we have attempted in this course. On the algebraic side, it requires the theory of characters on the finite abelian groups U(N) = (Z/NZ)×. From the perspective of the 21st century mathematics undergraduate with a background in abstract algebra, these are not particularly deep waters. More seri...
متن کاملPrimes in Arbitrarily Long Arithmetic Progression
It has been a long conjecture that there are arbitrarily long arithmetic progressions of primes. As of now, the longest known progression of primes is of length 26 and was discovered by Benoat Perichon and PrimeGrid in April, 2010 ([1]): 43142746595714191+23681770·223092870n for n = 0, 1, · · · , 25. Many mathematicians have spent years trying to prove (or disprove) this conjecture, and even mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012